Applications des fossiles moléculaires en microbiologie, agronomie et environnement

Applications des fossiles moléculaires en microbiologie, agronomie et environnement

Informations sur le document

Auteur

Eric Lichtfouse

École

Laboratoire Sols et Environnement, INRA/ENSAIA-INPL

Spécialité None
Année de publication 2007
Entreprise

None

Lieu Vandoeuvre-Lès-Nancy
Type de document None
Langue French
Nombre de pages 35
Format | PDF
Taille 1.09 MB
  • fossiles moléculaires
  • pollution
  • géochimie pétrolière

Résumé

I.Introduction

Organic chemistry is at least 2,700 million years old. This is the age of an Australian schist in which the oldest molecular fossils have been identified by the fine methods of analytical chemistry (Brocks et al., 1999). In this case, hopanes and steranes whose very specific stereochemistry demonstrates the existence of evolved organisms at that time: bacteria and eukaryotes. But what is a molecular fossil? In the same way that a fish will give rise, after a few million years of burial in the sediments, to those magnificent imprints of bones that we observe when breaking rocks, the biological molecules are altered, biodegraded, heated, dehydrated, aromatized and finally yield these fossil molecules whose specific structure makes it possible to make the link with their biological precursor (Albrecht and Ourisson, 1971, Eglinton, 1973, Ourisson, 1986, Peters and Moldowan, 1993). Today, the fields of application of molecular fossils abound, particularly for the search for new oil fields or to elucidate the origin of archaeological debris (Tissot and Welte, 1984, Connan et al., 1992). One of the most astonishing discoveries was the identification in 1976 of bacterial hopanols by Ourisson and Rohmer thanks to the prior identification of their fossils, true "molecular coelacanths", by Van Dorsselaer et al. (1974). A few other "orphan" fossils awaiting the discovery of their "parents" are presented at the beginning of this synthesis. Then, after an incursion into petroleum geochemistry, we will discover some aspects of the use of molecular fossils in agronomy and the environment.

1. Introduction

Les fossiles moléculaires sont des substances organiques présentes dans les sols, les sédiments, les charbons et les pétroles. Agés parfois de plusieurs centaines de millions d'années, l'étude de ces molécules de structure très spécifique a trouvé des applications dans plusieurs domaines scientifiques. Par exemple, et de manière inattendue, la découverte des hopanes fossiles dans les pétroles en 1970 a conduit à la découverte de nouvelles substances bactériennes, les hopanols, en 1976 ! À cet égard, une poignée de cesfossiles moléculaires "orphelins" restent actuellement sans "parents", c'est à dire qu'ils attendent la découverte de leur précurseurs biologiques. D'autre part, les fossiles moléculaires ont été largement utilisés pour étudier les réactions biogéochimiques régissant la dégradation et la "cuisson" de la matière organique sédimentaire en profondeur. Ces travaux ont été très utiles pour la recherche de nouveaux gisements de pétrole. Plus récemment, l'analyse moléculaire et isotopique du sol a révélé de nouvelles voies de transformation de l'humus, notamment par la mise au point d'une méthode permettant de mesurer le renouvellement à long terme au niveau moléculaire. Enfin, les fossiles moléculaires s'avèrent maintenant des outils remarquables pour authentifier les contaminations et pour mesurer l'efficacité de la réhabilitation dans les situations de pollution pétrolière des différents milieux comme les sols, les plantes, l'atmosphère, les sédiments récents et les aliments.

2. Fossiles orphelins

De nombreux dérivés stéroïdiques ont été identifiés dans les sédiments et pétroles (Mackenzie et al., 1982). Leur présence dans le milieu géologique peut être expliquée par la transformation diagénétique des stérols d’organismes vivants comme les plantes supérieures, les algues et les champignons. Toutefois, plusieurs groupes de recherche identifient des stéroïdes fossiles dont la structure singulière est difficile à corréler avec les stérols biologiques (4).

3. Géochimie pétrolière

L’étude isotopique des molécules sédimentaires peut livrer des informations sur l’environnement du milieu de dépôt (Hayes et al., 1990, Jasper et Hayes, 1990, Collister et al., 1992, Lichtfouse et Budzinski, 1995).

4. Indicateurs de source végétale

Le concept d’indicateur de source biologique fondé sur les fossiles moléculaires peut être appliqué à l’étude des matières humiques du sol : les acides humiques et fulviques solubles dans la soude aqueuse, et l’humine insoluble.

5. Indicateurs de source microbienne

La présence d’acides gras à courtes chaînes dans les sols et dans les sédiments est souvent attribuée à une contribution bactérienne (Parker et Leo, 1965, Parker et al., 1967, Perry et al., 1979, Grimalt et Saiz-Jimenez, 1989, Grimalt et al., 1989, Thompson et al., 1993).

6. Identification de polymères aliphatiques

Plusieurs hypothèses ont été proposées pour expliquer la formation des matières humiques (Schnitzer et Khan, 1978, Huc, 1980, Bollag et Loll, 1983, Hayes et al., 1989, Duchaufour, 1994).

7. Liaisons faibles

Plusieurs études suggèrent l’existence de liaisons faibles, non-covalentes, dans le réseau macromoléculaire des matières humiques.

8. Dérivés pétroliers

Lors d’une étude préliminaire de végétaux poussant à proximité de voies autoroutières à Nancy, visant à mettre au point le dosage des hydrocarbures aromatiques (Henner et al., 1997a), nous avons identifié des hopanes, des stéranes et des diastéranes dans cinq espèces (23, Bryselbout et al., 1998). De telles molécules authentifient l’apport des combustibles fossiles aux plantes.

9. Conclusion et perspectives

Les fossiles moléculaires sont de puissants outils pour étudier l’origine, la transformation et le transfert de la matière organique dans les écosystèmes modernes et anciens (26). Marqueurs d’origine, ils livrent des informations sur le milieu de dépôt, en précisant notamment les sources de la matière organique et la place de leur précurseurs biologiques dans les chaînes alimentaires. De manière surprenante, la découverte de certains fossiles "orphelins" peut conduire à l’identification de nouvelles substances biologiques.

II.Molecular Fossils Applications to Microbiology Petroleum Geochemistry Agronomy and Environment

Molecular fossils are organic substances occurring in soils, sediments, coals and crude oils. The study of these structurally specific fossils has generated applications among several scientific fields. For instance, the discovery of fossil hopanes in petroleum in 1970 has unexpectedly led to the identification of novel bacterial substances, hopanols, in 1976! Here, a handful of such "orphan" fossils await the discovery of their "parents" in modern biological organisms. Further, molecular fossils have been widely used to decrypt the biogeochemical processes ruling the degradation and the maturation of sedimentary organic matter with increasing burial. The findings have proved particularly efficient to locate new petroleum pools. More recently, molecular and isotopic investigations of soils have revealed novel pathways of transformations of humic substances. To this end, a method has been set up to measure the long-term turnover of individual organic substances in soil. Last, molecular fossils are now used as tools to authenticate polluted samples and to remediate petroleum-polluted media such as soils, plants, atmosphere, recent sediments and food.

1. Molecular Fossils

MOLECULAR FOSSILS E. Lichtfouse

Molecular fossils are organic substances occurring in soils, sediments, coals and crude oils. The study of these structurally specific fossils has generated applications among several scientific fields. For instance, the discovery of fossil hopanes in petroleum in 1970 has unexpectedly led to the identification of novel bacterial substances, hopanols, in 1976 ! Here, a handful of such "orphan" fossils await the discovery of their "parents" in modern biological organisms. Further, molecular fossils have been widely used to decrypt the biogeochemical processes ruling the degradation and the "cooking" of sedimentary organic matter with increasing burial. The findings have proved particularly efficient to locate new petroleum pools. More recently, molecular and isotopic investigations of soils have revealed novel pathways of transformations of humic substances. To this end, a method has been set up to measure the long-term turnover of individual organic substances in soil. Last, molecular fossils are now used as tools to authenticate polluted samples and to remediate petroleum-polluted media such as soils, plants, atmosphere, recent sediments and food.

2. Organic Geochemistry

Petroleum Geochemistry The isotopic study of sedimentary molecules can deliver information on the environment of the depositional environment (Hayes et al., 1990, Jasper and Hayes, 1990, Collister et al., 1992, Lichtfouse and Budzinski, 1995). Thus the molecular structure allows to specify the nature of the biological precursor. The pristane sedimentary, for example, comes mainly from the phytol of chlorophyll (Peters and Moldowan, 1993). In addition, thanks to the development of the analysis of carbon 13 at the molecular level (Sano et al., 1976, Matthews and Hayes, 1978, Barrie et al., 1984, Hayes et al., 1990, Lichtfouse et al., 1991, Lichtfouse and Budzinski, 1995), it is possible to obtain information on the place of the precursor organism in the food chain.

3. Agronomy

Identification of plant source indicators The concept of a biological source indicator based on molecular fossils can be applied to the study of humic substances in the soil: humic and fulvic acids soluble in aqueous soda, and insoluble humin. In fact, the biological sources and chemical reactions that govern the accumulation of humus are also very poorly understood (Lichtfouse and Lévêque, 1999a,b). Among the multitude of organic constituents of the soil, let us take the example of alkanes, alcohols and linear fatty acids (10, Schnitzer and Neyroud, 1975, Jambu et al., 1978, Moucawi et al., 1981, Schnitzer et al., 1986, Amblès et al., 1990, 1991, Dinel et al., 1990). These particular distributions are similar to those of plant cuticular waxes (Eglinton and Hamilton, 1967). On the other hand, their carbon 13 compositions (Lichtfouse et al., 1995a, Lichtfouse, 1998) are analogous to those of plants (Rieley et al., 1991, 1993, Collister et al., 1994b). Moreover, Lichtfouse et al. (1995a) observe the absence of their isotopic marking by incubating soils with glucose-13C, thus ruling out a microbial contribution.

4. Environment

Identification of microbial source indicators The presence of short-chain fatty acids in soils and sediments is often attributed to a bacterial contribution (Parker and Leo, 1965, Parker et al., 1967, Perry et al., 1979, Grimalt and Saiz-Jimenez, 1989, Grimalt et al., 1989, Thompson et al., 1993). Nevertheless, other biological sources are possible because fatty acids are ubiquitous constituents in living organisms. Short-chain fatty acids can also be formed by degradation of alkanes, alcohols and long-chain fatty acids (Morrison, 1969). In order to distinguish between these various contributions, Lichtfouse et al. (1995a) incubated an agricultural soil in the dark with glucose-13C. They observe an enrichment of linear fatty acids in C14, C16 and C18 (12). This result therefore confirms the microbial synthesis of these acids.

III.Molecular Fossils

The organic matter of soils and sediments comes from the transformation of biological tissues after the death of living organisms (Welte, 1970, Schnitzer, 1991). It is made up of substances from organisms such as plants, algae and bacteria (Schreiner and Shorey, 1909, 1911, Eglinton and Murphy, 1969, Albrecht and Ourisson, 1971, Eglinton, 1973, Amblès et al., 1989, Ries-Kautt and Albrecht, 1989, Dinel et al., 1990, Lichtfouse et al., 1992). Stigmasterol, for example, is a biological molecule typical of higher plants (Schreiner and Shorey, 1911, Huang and Meinschein, 1976, 1979), while hopanetetrol 1 is present in bacteria (Ourisson et al., 1979, Rohmer et al., 1984). Sinninghe Damsté and De Leeuw, 1990). Stigmasterol 2 is thus dehydrated, demethylated and dehydrogenated during slow diagenesis to form aromatic steroids in mature sediments and petroleums (Riolo et al., 1986, Lichtfouse, 1989, Lichtfouse et al., 1994a). Molecular fossils are source and transformation indicators that have given rise to numerous applications (Tissot and Welte, 1984, Moldowan et al., 1992, Connan et al., 1992, Peters and Moldowan, 1993, Killops and Killops, 1993, Engel and Macko, 1993).

1. Molecular Fossils

Molecular fossils refer to organic substances present in various environmental matrices like soils, sediments, coals, and crude oils. These fossils, despite being millions of years old, are structurally unique and have found significant applications in multiple scientific fields.

2. Orphan Fossils

The discovery of diverse fossils in geological samples led to the identification of bacterial substances called hopanols in 1976. This discovery, considered a remarkable scientific breakthrough, revealed the existence of novel biological substances, termed "orphan fossils," which are yet to be matched with their biological precursors in modern organisms.

3. Petroleum Geochemistry

Molecular fossils have been widely employed to decipher biogeochemical processes that drive the degradation and maturation of sedimentary organic matter during increasing burial depth. This knowledge has proven particularly valuable for locating new petroleum reservoirs.

4. Agronomy and Environment

In recent years, molecular and isotopic investigations of soils have uncovered novel transformations of humus substances. This has facilitated the development of methods to quantify the long-term turnover of specific organic compounds in the soil. Furthermore, molecular fossils have emerged as valuable tools to authenticate polluted samples and assess the efficacy of remediation techniques for petroleum-contaminated environments.

IV.Orphan Fossils

Numerous steroidal derivatives have been identified in sediments and petroleums (Mackenzie et al., 1982). Their presence in the geological environment can be explained by the diagenetic transformation of sterols of living organisms such as higher plants, algae and fungi. However, several research groups identify fossil steroids whose singular structure is difficult to correlate with biological sterols (4). The reason why these bacterial hopanols have not been identified earlier is analytical. Indeed, the classic separation of lipids involves a step of three washes of the organic phase with distilled water during which the hopanols, which are amphiphilic substances, are transferred to the aqueous phase and then into the sink.

There are currently several families of "orphan" fossils or "molecular coelacanths", ie geological molecules whose biological precursors have not yet been identified (4, Ourisson et al., 1982). Thus, Rullkötter and Philip (1981) identified hopanes in a Silurian bitumen whose carbon number extends up to 40, while this number reaches only 35 in known bacterial hopanols. On the other hand, by breaking the bonds of sedimentary organic macromolecules with specific reagents, Chappe et al. (1979) have identified hopanes with an extended carbon skeleton (up to C 50), which are not found in bacteria. Thus, the composition of the sedimentary hopanes will allow to distinguish between a bacterial and a plant contribution.